
A Practice of Remote Code Execution
Using CPU BUGs

Passket

http://passket.net,

passket#gmail.com

Agenda
• Preface
• Introduce
– The Story about CPU BUGs
– Threats in CPU : The Errata

• A Practice
– AI39 : What I Selected– AI39 : What I Selected
– Scenario : Did You Copy Wrong Buffer ?
– Cache Coherence Problem
– Unfortunately, Cache Miss & Hit Modified Line
– Packing Assembling with two cores
– Fixing the state : using NDIS

• There is Some Demos
• And, My Conclusion

Preface

At first,
There is no exploits,

Just geeky PoC(Proof-of-Concept)

Introduce
The Story About CPU BUGs

• When I went to HITB 2008 in Malaysia, Kris Kaspersky
announced about this issue;

• However, he did not make POC available, a lot of
people were disappointed about it;

• Anyway, he has proven this issue• Anyway, he has proven this issue
Conceptually and CPU bugs seem
they are really exploitable;

• He said “POC is not mine, actually,
I ripped off from malware”;

Introduce
The Story About CPU BUGs

Sellena,

Underground Rookit writer
Kris, The reversed

She told him rootkit writers has begun
to use CPU bugs for remote attacks

But she did not give him anything
Underground Rookit writer

Kris, The reversedBut she did not give him anything

Kris, The reversed passket, The geeky

He promised that he make POC is
available, so I went to malaysia

But he did not give me anything

Introduce
The Story About CPU BUGs

• Actually, This issue is not mentioned at first;
• Kernel Designers have mentioned this for a long time;
• These are mentioned that some hardware including CPU is useful

for malwares;
– http://marc.info/?l-openbsd-isc&m=118296441702631– http://marc.info/?l-openbsd-isc&m=118296441702631

– http://gcc.gnu.org/ml/gcc/1999-04n/msg00661.html

– http://lkml.indiana.edu/hypermail/linux/kernel/9711.3/0578.html

– http://www.reconstructer.org/papers/Rustock.C%20-%20When%20a%20myth%2
0omes%20true.pdf

– http://marc.info/?l=linux-kernel&m=123122287222668&w=4

– http://www.gnulinuxcentar.org/Implementing_And_Detecting_A_PCI_Rootkit.pdf

Introduce
Threats in CPU : The Errata

• So, CPU has some BUGs;
• And, It is exploitable;
• We can attack any bug-free app or driver or kernel

Conceptually;
– But, not really in some kinds of view ☺, – But, not really in some kinds of view ☺,

I re-mention it at end of my presentation

• The Errata : is a table of BUGs for hardware;

• How Do I know that my CPU is buggy ?
– Read the errata and Use CPUID instruction !

Introduce
Threats in CPU : The Errata

• Errata : Summay Table of Changes(Oct. 2008)

• What Stepping does include mine ?
– The family corresponds to bits [11:8] of the EDX register after RESET, bits [11:8] of

the EAX register after the CPUID instruction is executed with a 1 in the EAX register,
and the generation field of the Device ID registers accessible through boundary scan.

– The model corresponds to bits [7:4] of the EDX register after RESET, bits [7:4] of
the EAX register after the CPUID instruction is executed with a 1 in the EAX register,
and the model field of the device ID registers accessible through boundary scan

A Practice
AI39 : What I Selected

• AI39. Cache data Access Request from One Core
Hitting a Modified Line in the L1 Data Cache of the
Other Core May Cause Unpredictable System Behavior:
– when request for data from core 1 results in a L1 cache miss, the

request is sent to the L2 cache. if this request hits a modified line request is sent to the L2 cache. if this request hits a modified line
in the L1 data cache of core 2, certain internal conditions may
cause incorrect data to be returned to the core 1;

• This bug was selected by Kris, too;
• And I think this is a only bug to attack a remote

system widely;

A Practice
Scenario : Did You Copy Wrong Buffer ?
• Two thread are running in different core;
• Each thread receive packets from clients; And copy

packet into same buffer;
• Thread T1 copy buffer writing to socket stream some

message;message;
• Thread T2 copy shellcode binding on any port ;
• And then Process returns to T1 buffer;
• In normal case, Process write to socket stream some

message;
• But, thread T1 copy buffer of T2 using CPU bugs;

Process returns to bind-shellcode;

A Practice
Cache Coherence Problem

• Naked Core 2 Duo
Core 2 Duo Processor

Core 1 Core 2

L1 I-Cache L1 I-Cache

L2 Cache

L1 D-Cache L1 D-Cache

Main Memory

L2 Unified Cache
(shared with two cores)

A Practice
Cache Coherence Problem

• Cuz L2 Cache is shared with 2 cores, there is some
synchronization with caches in other cores;

• If core 1 modify a particular memory cell in L1 cache,
Cache Controller have to modify L2 cache and L1 cache
in core 2;in core 2;

• There is two policy to handle cache coherence;
– Write Through : Cache Update is happened in every update time;
– Write Back : Cache Update is happened in every flush time of cache;

• CPU Basically Use Write ? Policy for cache coherence;
• We can choose policy by setting CRx register

A Practice
Unfortunately, Cache Miss & Hit Modified Line

• There is some awful stuff during synchronization
Core 2 Duo Processor

Core 1 Core 2

L1 I-Cache L1 I-Cache

1. Core 1 request some data

for L1 Data Cache

2. The request miss in L1

Data Cache
L1 I-Cache

L1 D-Cache

L1 I-Cache

L1 D-Cache

L2 Unified Cache
(shared with two cores)

Data Cache

3. And the request is sent

to L2 Cache

4. Unfortunately, Core 2

request modify L1 Data

Cache concurrently

5. So, In Write-Through

policy, synchronization

is happened

6. And Core 1 has wrong

result by Core 2

A Practice
Packet Assembling with two cores

• Actually, Packet Buffer is not linear in lower-kernel
level;

• So, Packet Controller assemble this data into one
linear buffer, and we call that packet or frame;

• In tons of thread, Packet Controller may use two
cores; and synchronization is happened;
– But, Packet buffer is non-linear, so It may cause the problem,

right ? ☺

• But, we have another problems;

A Practice
Fixing The State : Using NDIS

• The situation is happened !
• But, How I confirm that situation ?

• So, I use NDIS(Network Device Interface Specificaton)
to ensure that;to ensure that;

• Every moment receiving packet, thread signal to
driver and get physical page address;

• Confirm page address using two core and I ensure it;

A Practice
Fixing The State : Using NDIS

A Practice
Fixing The State : Using NDIS

• And, I confirm the bug;
• However, I can not give to Core 1 the physical

address that I want;

• So, I have one classical method – the very large nop• So, I have one classical method – the very large nop
sled;

HOW HORRIBLE

BORED !

LET’S SEE SOME

CODE STUFF !

There is Some Demo

Thread 2 buffer

Thread 1 buffer

There is Some Demo

And, My Conclusion

• The buggy CPU is exploitable;
• But, It is not widely useful;
• It is not all threats for bug-free app or driver or

kernel;
• It is just new threats in the wild;• It is just new threats in the wild;
• Of Course, the other bugs in CPU is more affective to

attack; But, I think it is not easy;
• Many certain condition is fixed by kernel and

hardware;

• There is some episode for proving it;

And, My Conclusion

And, My Conclusion

At Last
Every All Stuff is mattered …………

Of course, if he really does, we’re all fucked !

Reference
• Kris Kaspersky,

“Remote Code Execution Through Intel CPU Bugs”

– http://conference.hitb.org/hitbsecconf2008kl/materials/

• John Heasman,

“Implementing and Detecting a PCI Rootkit”

– http://www.ngssoftware.com/research/papers/Implementing_And_Detecting_A_P
CI_Rootkit.pdf

• Intel Manual,

“Intel® 64 and IA-32 Architectures Software Developer's Manuals”

– http://www.intel.com/products/processor/manuals/

Reference
• Jon stokes,

“Inside the Machine: An Illustrated Introduction to Microprocessors and Computer Archi
tecture [ILLUSTRATED]”

• Kkamagui blog

– http://kkamagui.tistory.com/

• Somma blog

– http://somma.egloos.com/

• Xeraph blog

– http://xeraph.egloos.com/

Anyway

Thanks for your all
attention

And, And,
have a nice work ☺

