Passket
http: //passket.net, |
assket #gmail.com =
i k %“"fﬂfmg

HACK THE WORLD! HACKING & INFORMATION SECURITY CLUB ARGOS!

iIS093¥H 8N ALIYN23S UOLLBWYO04UI '8 QUINIUH iid780M 3H1L AJUH

Agenda

Preface
Introduce

— The Story about CPU BUGs
— Threats in CPU : The Errata
A Practice
— AI39 : What | Selected
_ Scenario : Did You Copy Wrong Buffer ?
— Cache Coherence Problem
— Unfortunately, Cache Miss % Hit Modified Line
— Packing Assembling with two cores
Flmng the state : using NDIS
There is Some Demos

And, My Conclusion

iIS0944 NI ALIINJ3S UOILLEWE04UI "8 DQUIAJHH iid1H0m JHL AJHH

s A

saena e

s S e
e o S o e
e S o e S e S e

:\.:-\.5:'\.:' i

Snmon

= *.-\:.:

e o ool
S
7 s

OFNEhi—H
e .

At Ffirst,
There is no exploits,
Just geeky PoC(Proof -of -Concept)

iIS093¥H 8N ALIYN23S UOLLBWYO04UI '8 QUINIUH iid780M 3H1L AJUH

Introduce

The Story About CPU BUGS

When | went to HITB 2008 in Malaysia, Kris Kaspersky
announced about this issue;

However, he did not make POC available, a lot of
people were disappointed about it;

Anyway, he has proven this issue

Conceptually and CPU bugs seem

they are really exploitable; Remote Code Executon
through Intel CPU Bugs

He said “POC is not mine, actually,

| ripped off from malware” T
Kris Kaspersky, Alice Chang

Endeavor Security, Inc.

iIS093¥H 8N ALIYN23S UOLLBWYO04UI '8 QUINIUH iid780M 3H1L AJUH

Introduce

She told him rootkit writers has begun _
to use CPU bugs for remote attacks

>
Sellena, But she did not give him anything Kyis, The reversed
Underground Rookit writer
) fl‘-i ’ ,.'::-‘,-n
He promised that he make POC is |
available, so I went to malaysia L AT
> |

Kris, The reversed But he did not give me anything passket, The geeky

RGOS —

iIS093¥H 8N ALIYN23S UOLLBWYO04UI '8 QUINIUH iid780M 3H1L AJUH

Introduce

The Story About CPU BUGS

Actually, This issue is not mentioned at First;
Kernel Designers have mentioned this for a long time;

These are mentioned that some hardware including CPU is useful
for malwares;

http://marc.info/?1-openbsd-isc¥m=11829644170263I

http://gcc.gnu.org/ml/gcc/1999-0Un/msq00661.html

http: //lkml.indiana.edu/hypermail /linux/kernel /9711.3 /0578 .html

http: //www.reconstructer.org/papers/Austock.C%20-%20When%20a%20myth %2

Oomes %20true.pdf

http://marc.info/?1=linuxk-kernel¥m=123122287222668Bw=Y

http: //www.gnulinukcentar.org/Implementing_And_Detecting_A_PCl_Rootkit.pdf

RGOS —

iIS093¥H 8N ALIYN23S UOLLBWYO04UI '8 QUINIUH iid780M 3H1L AJUH

Introduce

[hreats in CPU ' The Errata

So, CPU has some BUGs,
And, It is exploitable;

We can attack any bug-free app or driver or kernel
Conceptually:

— But, not really in some kinds of view ©),

| re-mention it at end of my presentation

The Errata : is a table of BUGs fFor hardware,

How Do | know that my CPU is bugqy ?

— Read the errata and Use CPUID instruction !

iIS093¥H 8N ALIYN23S UOLLBWYO04UI '8 QUINIUH iid780M 3H1L AJUH

Introduce

o Errata : Summay Table of Changes(Oct. 2008)

Stepping | Stepping | Stepping
Number Plans ERRATA
B-2 L-2 A-1

AH38 X X X Plan Fix | FXSAVE/FXRSTOR Instructions which Store to the End of the
Segment and Cause a Wrap to a Misaligned Base Address
(Alignment <= 0x10h) May Cause FPU Instruction or Operand
Pointer Corruption

AH39 X X Fixed | Cache Data Access Request from One Core Hitting a Modified Line

in the L1 Data Cache of the Other Core May Cause Unpredictable
System Behavior

L | JRRPR s

LTl ol ot e e B R R e e PR o e e T Y |

« What Stepping does include mine ?

— The family corresponds to bits [11:8] of the EDH register after RESET, bits [11:8] of
the €AH register after the CPUID instruction is executed with a I in the EAH register,
and the generation field of the Device ID registers accessible through boundary scan.

— The model corresponds to bits [7:U] of the EDH register after RESET, bits [7:4] of
the €AH register after the CPUID instruction is executed with a I in the EAH register,
and the model field of the device ID registers accessible through boundary scan

RGOS —

iIS093¥H 8N ALIYN23S UOLLBWYO04UI '8 QUINIUH iid780M 3H1L AJUH

A Practice
Al39 : What | Selected

o Al39. Cache data Access Request from One Core
Hitting a Modified Line in the LI Data Cache of the
Other Core May Cause Unpredictable System Behavior:

— when request for data from core | results in a LI cache miss, the
request is sent to the L2 cache. if this request hits a modified line
in the LI data cache of core 2, certain internal conditions may
cause incorrect data to be returned to the core I;

o This bug was selected by HKris, too;

o And | think this is a only bug to attack a remote
system widely;

RGOS —

iIS093¥H 8N ALIYN23S UOLLBWYO04UI '8 QUINIUH iid780M 3H1L AJUH

_Scenario : Did You Copy Wrong Buffer ?

A Practice

Two thread are running in different core;

Each thread receive packets from clients,; And copy
packet into same buffer.

Thread Tl copy buffer writing to socket stream some
message,

Thread T2 copy shellcode binding on any port
And then Process returns to Tl buffer;

In normal case, Process write to socket stream some
message,

But, thread Ti copt,L buffer of T2 using CPU bugs;
Process returns to bind-shellcode;

RGOS —

iIS0944 NI ALIINJ3S UOILLEWE04UI "8 DQUIAJHH iid1H0m JHL AJHH

L2 Cache

L2 Unified Cache
(shared with two cores)

iIS093¥H 8N ALIYN23S UOLLBWYO04UI '8 QUINIUH iid780M 3H1L AJUH

A Practice

Cache Coherence Problem

Cuz L2 Cache is shared with 2 cores, there is some
synchronization with caches in other cores;

If core | modify a particular memory cell in LI cache,
Cache Controller have to modify L2 cache and LI cache
in core 2;

There is two policy to handle cache coherence;
— Write Through : Cache Update is happened in every update time;

— Write Back : Cache Update is happened in every flush time of cache;
CPU Basically Use Write ? Policy For cache coherence;

We can choose policy by setting CAx register

RGOS —

iIS0944 NI ALIINJ3S UOILLEWE04UI "8 DQUIAJHH iid1H0m JHL AJHH

--::._5:\::.- -\.:\::a.\::

: St
e
" el

o There is some awful stuff during synchronization

Core 2 Duo Processor
1. Core 1 request some data

for L1 Data Cache

2. The request miss in L1
Data Cache

3. And the request is sent
to L2 Cache

4. Unfortunately, Core 2
request modify L1 Data
Cache concurrently

5. So, In Write-Through

. policy, synchronization
L2 Unified Cache is happened

(shared with two cores) 6. And Core 1 has wrong

RGOS —

result by Core 2

iIS093¥H 8N ALIYN23S UOLLBWYO04UI '8 QUINIUH iid780M 3H1L AJUH

A Practice

Packet Assembling with two cores

Actually, Packet Buffer is not linear in lower-kernel
level;

5o, Packet Controller assemble this data into one
linear buffer, and we call that packet or frame;

In tons of thread, Packet Controller may use two
cores, and synchronization is happened;

— But, Packet buffer is non-linear, so It may cause the problem,
right ? ©

But, we have another problems;

iIS093¥H 8N ALIYN23S UOLLBWYO04UI '8 QUINIUH iid780M 3H1L AJUH

A Practice

iina The Skate : lisina OIS

The situation is happened !
But, How | confirm that situation ?

So, | use NDIS(Network Device Interface Specificaton)
to ensure that;

Every moment receiving packet, thread signal to
driver and get physical page address;

Confirm page address using two core and | ensure it;

RGOS —

iiS09YY N1 ALIYNIAS UOLLEWEO04UI "8 DQUINILH iidsom JHL AJUH

Flags:
PhysicalPageCount:

TotalLength:

\J

="

Buffers

ByvteOffset:
ByteCount:
PvsicalPages]| |

StartVirtualAddress: p 1|
ByvteOffset:

ByteCount:
PvsicalPages| |
Next:

StartVirtualAddress: pt 7/

Virtual
Memory

=

-

Physical
Memory

Physical Page

Virtual Page

i
/ : Virtual Page

Physical Page

Virtual Page

e e e e e = —— =

Physical Page

Physical Page

~ Virtual Paze
1 £

f Virtual Page

Physical Page

RGOS —

iIS093¥H 8N ALIYN23S UOLLBWYO04UI '8 QUINIUH iid780M 3H1L AJUH

A Practice

And, | confirm the bug,

However, | can not give to Core | the physical
address that | want;

50, | have one classical method — the very large nop
sled;

HOW HORRIBLE
BORED !
LET'S SEE SOME
CODE STUFF!

iIS093¥H 8N ALIYN23S UOLLBWYO04UI '8 QUINIUH iid780M 3H1L AJUH

There Is Some Demo =

__asm {
mov eax, 1
cpuid
mov reg_edz, edx

¥

return {unsigned int) { { reg_edx & O0x800008FF));

£/ Wiy bind shell

unsigned char scode[] =

"= 33U c oW B 3k hxe O b B d M x e et d Puhx 7 Uk 2 b F UM S b B 1 7 3R 1 362"
W= GBI 7 1etixB It ebit Fotixe 2W R F Ul D OW R 3 20 7 x5 3W B2 a 1= 6 Bl xe 1™
W= 95U 3 B 1 chix 7 24k helth 7ol 1 R S b x 5 6t < d 3thx e DY 2 1 bt 1 2= 594 = 7 Bl 95"
"Wx 25U b0 1 chix i1t balbn SO0 7 ox S 7ixe 16 chix 1 o 1 Pt BA= 6 9= 5 787"
"WxcoltxdelS Thed attk 6diWx 9O S di = 136 bl 9 abhx 7 e altx 51 Bc b33 6
"Wl Fibxhdbie 1 clbe i 1t et S 9We 7 ol 7 Bthe 14 S U d e 95k 35 W= Bt e D 6l £ 57
"6 Ok 7 b clbe D b DGk T oW Bbt e 7 Fiba b 6 9 ot 7 atte e 1R 1b e a T 95"
" 2 abhx S M1 oo et 7ok FOWE 1 cix G ek 6 26 Dok F YD Bhb 20 S ok 7 bbb et
"W OSkh B ebld £ 1 Adbh Dok 3 e a it 2 chbx D202 Fié o Wb 2ot 35 W Bcl 6 Bihc e’
"= 02U D 3W R 7 abhxe 2Wx 51 08 6 BW R c B I SW R d 1hhx 7 2W 1 7 8 e D DSWR O Fibx1C™
W= 3 Fx3 2W 95k e 1 battt 3 BiEx et 1 74 D PR £ Sbhec B e 1 bolix Bbb = c M 4d™
"= 30U Bbb < d Wbk b dbx 2 94 Db 6 BY = c ethx Aot 3 Bk B ot 424 Bolix Bbi = 1 et F £
"W F P 3 03 3k Bk R 1 abt O Ptk c B R e Wb ol 3 2Wx B W U 3 Pt a TR U T 7 6
"Wxceltx FSW b Ok 7Hx Id a7 i1 hdthx I P a7 bW F ol B At 1 1R 1157
"Wx3ditxa 7 41k hetx Jelty Boixc 2 e 1txbatd c bbb £ PR FOWx 13 Deld R e el 40"
“Wx IS Betc 2 e Hxbatt: Zetx Fdbx 7 abhx Dok 3 B F Ut 7 3 e 3= bdWx Fdihx e
"W 3 I TN S bl 9 P Bdt 32W R d 3W D FUh B B 6 9 S P e dit c B R a6t d S 33"
"W Ohkh1 abt bbb B dihx e Thh 22W R a Fi kb S e b F 3R F P Gokb DU e b B ke 1"
"1 Pt b6 Bl c Bhhe 31k BFW R cSW AP 3 bbb G0t F db Fib 3he B9 C 2 i F
"W 9o BB F Firxb W DI S A5 O hdihx P5Wx Bebix FdW e 1 P56 FW R 6 Bl xCe™
"Wxe 1z B o bt 9 dix aett 3cHx 6 BW R c B I B a Tt U 7MW 7ol D alix d 24 = 9 3k 41"
"3z a W1 e 1 xbattt S8 0T 10" ;

Thread 2 buffer

/4 write sock stream a melong

unsigned char scode2[] =

"Wx33Wco B e M dcxd MR e et d PR 7 Ukt 2 Ukb £ Wi S DU B 1R 7 W 1 3= 9 8™
"Wxb O 18U 27U B I e bR Fot ke 2WR FUMR 6 CHx S B D W 2 7= D Ol b DW= 9 3W = 62"
"Wxaclx3bWxou 22 e B b1 F7 R ackxd Pt aBtx 9 3Wx 7 8Wxb Bl = b1l = F W= 6™
"W bW Bul O3 20W R T e B 1M dBxbeltx Ikt It d BW xS W O 7R 71 d 2= 23"
"Wk 72U F W d I ab e W IR 23 e S SO 9 W 7 B xb At b1 £ W 1T
"Wx1blWxbclxS W ackc PR ackz 1M ookt 1 bkt ackhx D 3Wx 2 64hx 7 b= 30U = Lokt = B3
“"hha D dybth 7 30 2 Ol o Tl F Ut 3 Db S BY a1 T 1 Sl 7 Ot 6 Bth 2 Db 1 bt £ B Al ac™
"t e Bt act b Stk actix £ B h Bl F 3t 2 okt 1 Dithe 3 Ot a Btk 2 7 D Bt b Bth 9 3 I F
"t actixe Fifa 2 Otk d 1 £ Ot e Obh D1t d Pl 3t 7 Bt G 34 7 7 F B b Bth 9 2 23
“Hr o Pl d 8t 8 Bth d Ot 1 attheth bt d Bha 7 Fihe d St 7 Dtk Pt £ FY D Bbthe 7Sl 2
WxFotbd Fiba 7 6t b Otk D Bt B 1 B2 7" 5

Thread 1 buffer

RGOS —

iIS093¥H 8N ALIYN23S UOLLBWYO04UI '8 QUINIUH iid780M 3H1L AJUH

There Is Some Demo

SetPriorityClass{ GetCurrentProcess{), HIGH PRIDRITY CLASS };

vhThread[8]
vhThread[1]

CreateThread{ NULL, 8, TestThreadi, { LPUOID)} 8, CREATE_SUSPENDED, NULL };
CreateThread{ NULL, 8, TestThread2?, { LPUOID)} 8, CREATE_SUSPENDED, NULL };

SetThreadAffinityHask({ vhThread[8], 8x1);
SetThreadAffinityHask{ vhThread[1], 8x1);

vhThread[8]
vhThread[1]

CreateThread{ HULL, @, TestThread1, { LPUOID)} @, CREATE_SUSPENDED, HULL };
CreateThread{ HULL, @, TestThread2, { LPUOID)} @, CREATE_SUSPENDED, HULL };

SetThreadaffinityMask{ vhThread[8], 8x1);
SetThreadAffinityMask({ vhThread[1], B8x2);

iIS093¥H 8N ALIYN23S UOLLBWYO04UI '8 QUINIUH iid780M 3H1L AJUH

And, My Conclusion =

The bugqy CPU is exploitable;
But, It is not widely useful;

It is not all threats for bug-free app or driver or
kernel;

It is just new threats in the wild;

Of Course, the other bugs in CPU is more affective to
attack; But, | think it is not easy;

Many certain condition is fired by kernel and
hardware.

There is some episode for proving it;

iiS09YY N1 ALIYNIAS UOLLEWEO04UI "8 DQUINILH iidsom JHL AJUH

And, My Conclusion

e Sl SR

-

Intel will be keeping an eye on his upcoming research :

“George Alfs, 3 spokesman for Intel, said he has not yet seen
Kaspersky's research, nor has he spoken to hum about it. "We have
evaluation teams always looking at issues. We'll certainly take a look at
this one,” said Alfs. "All chips have errata, and there could be an issue
that needs to be checked. Possibly. We'd have to investigate his paper.”

[wouldn't want to minimize the problem, but at least just write down some thoughts of mine.

Everyone is worried about what Kris will release to the public and | can understand this. But
security conference, there are really interesting presentations and lot of experienced people

threat in the wild. Many ofthese PaoCs require high levels of skill (which most malware auth
actually make them work in other contexts.

theaorically serious threats. But this doesn't necessarily mean that an exposed PoC will become a serious

every year, at every
talking about

ars do not have) to

RGOS —

o -
o e S

S

.-.-:\,%ECE-; ?ﬁbﬁ" 'ﬁ o S :ﬁ_:- .-.-?a:ﬁ;é; }.3*# W.’ . -.. m@ﬁﬁ'ﬁ }an %, -..y-\. J"'ﬁ'ﬁ - % M" '\-\.&;

Hnd mg Conclusmn 1

G S " :::_:.: :..:'.:-:

E: S
o
o

“Intel CPUs have explotable bugs which are vulnerable to both local and
remote attacks which works against any OS regardless of the patches
apphed or the applications which are running. In this presentation, I will
share with the participants the finding of my CPU malware detection
research which was funded by Endeavor Security. I will also present to
the participants my improved POC code and will show participants how
It's possible to make an attack via JavaScrnipt code or just TCP/IP packets
storms against Intel based machine. Some of the bugs that will be
shown are exploitable via common instruction sequences and by
knowing the mechanics behind certain JIT Java-compilers, attackers can
force the compiler to do what they want (for example: short nested
loops lead to system crashes on many CPUs). I will also share with the
participants my experience in data recovery and how CPU bugs have
actually contributed in damaging our hard drives without our knowledge.

o

iiIS098Y 8N ALIYNI3S UOLLUWIOAUL '8 QUINIYH iid7d0m 3HL AJUH

RGOS —

iIS093¥H 8N ALIYN23S UOLLBWYO04UI '8 QUINIUH iid780M 3H1L AJUH

At Last C

Every All Stuff is mattered

sebastianavina 2 points & months age® [-]
| what does Intel's statement of "Unpredictable System Behaviour" really mean, anyway?
example: When you read a reqister right after boot, the register surely contains something, but is unpredictable...
permalink parent reply {verb}
cyantific 2 points & months ago [-]
That doesn't sound like something you can make happen with JavaScript, either. It'll be interesting to find out if he has
something real or not. Of course, if he does, we're all fucked. I guess that's the fun part. :-)
permalink parent reply {verb}
darkry Z points 6 months ago®

I mean... in theory you could implement that with javascript as all you would really need would be some tight chunk of
code that sprays the caches... That said I think it would be hard enough in ASM... This is all assuming that I am even
on the right track of course :/

I am guessing he actually has something exploitable... On the other hand, how useful it is in the real world, I question.
Should be interesting to see in Oct though @)

"Of course, If he does, we're all fucked."

hehe I doubt that. worst/best case it will be an interesting poc I bet. I kind of doubt he'll be dropping remote x86 cross
platform 0-day ;p

permalink parent reply {verb}

Of course, if he really does, we’re all fucked !

RGOS —

iIS093¥H 8N ALIYN23S UOLLBWYO04UI '8 QUINIUH iid780M 3H1L AJUH

Aeference =

Kris Kaspersky,
“Aemote Code Execution Through Intel CPU Bugs”
— http://conference.hitb.org/hitbsecconf2008kl/materials /

John Heasman,
“Implementing and Detecting a PCl Rootkit”

— http://www.ngssoftware.com/research/papers/Implementing_And_Detecting_A_P
Cl_Rootkit.pdf

Intel Manual,
“Intel ® 64 and IA-32 Architectures Software Developer's Manuals”

— http://wwuw.intel.com/products/processor/manvals/

iIS093¥H 8N ALIYN23S UOLLBWYO04UI '8 QUINIUH iid780M 3H1L AJUH

Aeference =

Jon stokes,

“Inside the Machine: An lllustrated Introduction to Microprocessors and Computer Archi

tecture [ILLUSTRATED]”

Kkamaqui blog
— http://kkamagqui.tistory.com/

Somma blog

— http://somma.egloos.com/

Heraph blog
— http://xeraph.eqgloos.com/

iIS093¥H 8N ALIYN23S UOLLBWYO04UI '8 QUINIUH iid780M 3H1L AJUH

Thanks for your all
attention

And,
have a nice work ©

